Improving Particle Swarm Optimization Based on Neighborhood and Historical Memory for Training Multi-Layer Perceptron
نویسنده
چکیده
Many optimization problems can be found in scientific and engineering fields. It is a challenge for researchers to design efficient algorithms to solve these optimization problems. The Particle swarm optimization (PSO) algorithm, which is inspired by the social behavior of bird flocks, is a global stochastic method. However, a monotonic and static learning model, which is applied for all particles, limits the exploration ability of PSO. To overcome the shortcomings, we propose an improving particle swarm optimization algorithm based on neighborhood and historical memory (PSONHM). In the proposed algorithm, every particle takes into account the experience of its neighbors and its competitors when updating its position. The crossover operation is employed to enhance the diversity of the population. Furthermore, a historical memory Mw is used to generate new inertia weight with a parameter adaptation mechanism. To verify the effectiveness of the proposed algorithm, experiments are conducted with CEC2014 test problems on 30 dimensions. Finally, two classification problems are employed to investigate the efficiencies of PSONHM in training Multi-Layer Perceptron (MLP). The experimental results indicate that the proposed PSONHM can effectively solve the global optimization problems.
منابع مشابه
Analysis of Optimization Techniques for Feed Forward Neural Networks Based Image Compression
This paper reviews various optimization techniques available for training multi-layer perception (MLP) artificial neural networks for compression of images. These optimization techniques can be classified into two categories: Derivative-based and Derivative free optimization. The former is based on the calculation of gradient and includes Gradient Descent, Conjugate gradient, Quasi-Newton, Leve...
متن کاملMulti-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable rec...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملCross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness
This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information
دوره 9 شماره
صفحات -
تاریخ انتشار 2018